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Two Domain-specific Languages based on Haskell

ROBERT KROOK

Department of Computer Science and Engineering
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Abstract

In this thesis, we describe our research on how to program low-level platforms
with high-level languages. As an example, consider applications that run on
microcontrollers. Such applications may need to specify precise temporal
behavior, carefully manage power usage, and handle cryptographic keys. Low-
level platforms are programmed using low-level languages such as C/C++,
where the lack of expressiveness can lead to error-prone code.

We investigate whether we can use high-level languages to program these
platforms, by embedding domain-specific languages in a host language, Haskell.
A high-level language offers better expressivity and shields the developer
from low-level details, yielding code that more concretely describes what the
application is supposed to do. Furthermore, a richer runtime system could ease
the burden of e.g. memory management and scheduling of coroutines.

The papers in this thesis indicate that it is possible to program these
devices using a high-level language. We develop two domain-specific languages,
Scoria and HasTEE. Scoria is evaluated on NRF52 microcontrollers, where
we run applications that require precise, temporal behavior and perform I/0.
HasTEE is evaluated on machines whose processor has support for Intel Software
Guard Extension and shows that the type system of Haskell can be used to
automatically partition a Haskell application and run it in a trusted execution
environment.
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Summary






Chapter 1

Introduction

Consider an application that is distributed over a network, e.g. as a set
of Internet of Things-devices (IoT). The connection between devices forms a
mesh network, and for the devices to be able to cooperate and implement the
application they need to agree on facts such as what the current time is, what
other devices are part of the network, and more. In many cases IoT devices
take one of two roles. Either a device will perform period tasks such as reading
a sensor and then transmitting the value across the network to other devices,
or a device will be idle until a value arrives from another device, at which point
the device needs to react to that value.

The application described above has many moving parts that are non-trivial.
The scarcity of hardware resources on many IoT devices means that devices are
often forced to rely on a battery for power. To ensure the continued availability
of devices, they need to carefully manage their power consumption such that
the battery life is extended as far as possible. In addition to this, temporal
properties need to be carefully stated and implemented. It could be crucial that
future action is performed at a very precise moment in time. For devices to
form a mesh network and cooperate, the devices need to manage cryptographic
keys. These keys are used to decide if a device is part of the network or not and
to ensure that a message in transit from one device to another is encrypted,
such that the integrity of the network is not violated.

The above requirements are very pervasive during the development of such
an application and must be considered at every stage of development. Devices
such as these are usually programmed using low-level languages and toolchains
such as C/C++. All the requirements of the application above will require
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4 CHAPTER 1. INTRODUCTION

a lot of boilerplate code. Many things need to happen to ensure that the
requirements are met but don’t relate to the application logic. Furthermore,
the lack of features such as memory safety makes code error-prone.

High-level languages offer different language abstractions that can more
easily express the desired behavior of an application. In addition, a language
could offer domain-specific abstractions that ease application development for a
specific domain. As an example, aside from being a general-purpose language,
Haskell’s support for custom algebraic datatypes and pattern-matching make
Haskell excel at implementing programs that need to manipulate trees, such as
compilers and interpreters. Erlang’s support for spawning concurrent processes
that can communicate between endpoints in a network makes Erlang a good
choice for implementing applications that need to be distributed and scalable.

We ask ourselves a question; can we leverage high-level languages with
domain-specific abstractions to ease the development of applications such as
the one described at the top of this section? If the developer can be freed from
the burden of having to maintain boilerplate code, the developer can focus on
what the application is supposed to do, rather than details of how it does it.

The topic of this thesis is to investigate whether it is feasible to develop
a high-level language that meets the requirements of the application domain
described above. requirements. To answer this, we develop DSLs that ex-
plore what domain-specific abstractions may be useful. The languages are
implemented as embedded domain-specific languages (DSL) in the functional
language Haskell. Embedding a DSL in a host language drastically reduces the
initial cost of language development, and enables experimentation to commence
much quicker. An embedded language can be implemented as an embedded
compiler that generates code to be executed later, or as an embedded interpreter
that runs the program during host language execution time.

While we don’t yet have a full story and a definitive answer, the work in
this thesis brings us closer. The thesis presents two DSLs, Scoria and HasTEE.
Scoria investigates domain-specific abstractions that help a developer specify
the temporal behavior of their program. Additionally, the runtime system
of Scoria can recognize that a long period of inactivity is coming, and can
choose to put the device it is running on in a low-power mode, to conserve
energy. While we have not evaluated how much power can be conserved yet,
we believe it will be easy to evaluate in the future. Scoria is intended to run on
microcontrollers with scarce resources. Given the extensive runtime demands
of Haskell, it becomes infeasible to employ Haskell as the execution vehicle.
Consequently, to address this limitation, Scoria is implemented as an embedded
compiler that generates C code. The C code is compiled at a later stage and
executed on the device.

HasTEE develops domain-specific abstractions that ease the development of
software with security requirements. Specifically, HasTEE enables a developer
to use the type system of Haskell to identify the parts of an application that
are to be executed in a trusted execution environment (TEE). The type system
encodes a variant of information-flow control (IFC), but where traditional IFC
threat models require a developer to trust an underlying operating system,
HasTEE does not require trust in an operating system. A HasTEE application
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Figure 1.1: The yellow line denotes the LED state and its desired temporal
behavior. The desired behavior is that it is turned on and off with a stable
frequency, with each change in state occurring at the half-period points, denoted
HP in the diagram.

is automatically partitioned into two programs, an untrusted program and
a trusted program, with the trusted program being executed in a hardware-
enforced TEE. The developer does not need to care about how confidentiality
is achieved when developing the application. HasTEE is intended to run on
machines with more resources than that of the target platform of Scoria, and
as such is implemented as an embedded interpreter, where HasTEE uses the
Haskell runtime as its execution vehicle.

The results of this thesis indicate that there is space for a high-level language
with domain-specific abstractions that will ease application development in
this domain, and many interesting lines of future work could be pursued. First,
we wish to draw some synergy between Scoria and HasTEE and enable a
developer to write Scoria programs that use TEEs on microcontrollers, e.g.
Arm TrustZone on Cortex-M processors. Second, we wish to investigate if we
can extend Scoria with functionality to describe complete networks of devices
and generate code for each of them. We wish to use the type system of Haskell
to identify unique devices and partition an application based on that.

In the remaining part of this introduction, we start by introducing the two
domains that the DSLs presented in this thesis focus on. We describe these
domains using an example application and discuss specific aspects of application
development within each domain. Additionally, we explore domain-specific
features that can facilitate development. Following that, a background section
covers core topics that are pertinent to this thesis. Finally, the two papers will
be presented.

1.1 Programs with Temporal Behaviors

Consider a simple program that flashes an LED at a fixed frequency. This
program is the ”Hello world!” of microcontroller programming and is often dis-
tributed as an example application with operating systems for microcontrollers.
It illustrates how to perform periodic tasks that do IO. The desired output
should vary over time as illustrated in figure 1.1.
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A pseudo-code variant of the program, as it is often illustrated, is shown
below.

void main() {

while(1) {
toggle_led(the_led);
sleep(half_period);

}

An equivalent version of the same program could use alarms and callbacks
to specify what should happen at what time. Such a version of the program
appears below.

void toggle() {
toggle_led(the_led);
set_alarm(half_period, &toggle);
}

void main() {
configure_timer();
set_alarm(half_period, &toggle);
}

The main function above configures some timer and sets an alarm that,
when the alarm goes off, will trigger an invocation of the toggle function. The
toggle function flips the current value of the LED and then sets a new alarm.
While the code is very simple and seems to implement the desired semantics,
it is buggy! The frequency will not be the one we want. When the alarm goes
off and the function is invoked, the function performs some operations before
the next alarm is set. If we call the time it takes to perform the operations
and the half period hp, the times the alarm goes off are

0a50P‘+'hpa2(60p‘+'hp)a3(50p‘+'hp)a4(50p‘+'hp)w~

This sequence illustrates that, as time progresses, the frequency drifts
further and further away from the target. See figure 1.2.

Let us try to fix our program to allow for the time it takes to perform the
operations. As soon as toggle is invoked, we query the system for the current
time. The next time we set the alarm we configure the alarm to go off relative
to the previously sampled time.

time current;

void toggle() {
current = current_time();
toggle_led(the_led);
set_alarm_relative_to(current, half_period, &toggle);
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Figure 1.2: The diagram illustrates where the half-period points are, and where
the change in LED state occurs. The red segments illustrate the time d,p.
The additions of d,, lead to the frequency of the change in LED state drifting
further and further away from the half-period points.

void main() {
configure_timer();
current = current_time();
set_alarm_relative_to(current, half_period, &toggle);

3

Even with the alarm set relative to when the process last woke up, the
frequency suffers from drift. An oscilloscope will report that the drift is smaller
than before, but still present. This remaining source of drift is a bit trickier to
account for.

When the actual hardware clock reaches the point where an alarm should
be raised, it takes some time for the operating system to locate the toggle
function and invoke it. To account for this delay, we can choose to set alarms
not relative to when toggle was last invoked, but rather relative to when
toggle was supposed to have been invoked. We do this by implementing a
logical clock that is incremented to reflect what the time of the system should
be.

time current;

void toggle() {
current = current + half_period;
toggle_led(the_led);
set_alarm_absolute(current + half_period, &toggle);

}

void main() {
configure_timer();
current = O;
set_alarm_absolute(current + half_period, &toggle);
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LED state

o

Figure 1.3: The diagram illustrates the frequency of the change in LED state
in the final version of the program. There is a small phase error, indicated by
the dotted lines, but otherwise, the frequency is the expected one. The dotted
lines denote the actual half-period points, and the distance from the points
where the LED state changes to the half-period points remain constant. The
distance is of duration diookup-

The program now maintains a global variable that tracks the current time.
An absolute alarm is set that will go off at time current + half _period,
regardless of what time it is when the alarm is set. The next time toggle is
invoked, it is assumed that time has progressed to current + half period,
and the logical time is updated to reflect this. If the system time is queried
at this point, it will show that the current time is current + half_period +
Olookup, Where djookup is the amount of time it takes for the toggle function to
be found and invoked.

Executing this program will flash the LED with the correct frequency. Since
the delay for the system to look up and invoke the callback (dio0kup) is still
there, there is a small phase error (the size of which is equal to dj0okup), but
the frequency is still stable and correct. The LED state is illustrated in figure
1.3

While the initial program seemed intuitively reasonable, it was erroneous.
The final version is correct (up to the phase error), but is substantially more
complicated. While the pseudo-code might look short and simple, still, we
now have a program that maintains a logical time and sets absolute deadlines,
something that is easy to get wrong.

The extra complication is a result of the primitive timing API in a language
such as this. Querying the system for the current time and setting alarms is a
very coarse API. The fact that the system does not assist the developer with
accounting for systematic delays and the time it takes to perform computations
makes the whole business of reasoning about deadlines much more difficult.

Domain-specific abstractions that would make writing this program simpler
are

e An abstraction that schedules an alarm to go off after a certain amount
of time

e An abstraction that yields control while awaiting an alarm
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A developer should be able to use these primitives without thinking about
systematic delays like the ones discussed above. The logical time should be
maintained by the runtime system. A rewrite of the above program using
functionality of this kind yields

void main() {
alarm a = new_alarm();
while(1) {
toggle_led(the_led);
set_ds_alarm(half_period, shared);
wait(shared);

3

The program looks very similar to the first version, except for using an
explicit alarm instead of an invocation of a sleep function.

The first paper in this thesis describes work in this domain. A domain-
specific language, which we call Scoria [1], is implemented as an embedded
language in Haskell. While Scoria has primitives similar to the ones described
above, the alarms are more expressive. Alarms take the form of mutable
variables, which always have a value. An update to a mutable variable can be
scheduled for the future, while a process can choose to block until a mutable
variable receives an update. The conceptual alarm goes off when the update
occurs, and with this alarm comes a value (the new value of the variable).

signal_generator :: Ref Output -> Time -> SSM ()
signal_generator led hp = routine $ while True $ do
after hp led (invert $ deref led)
wait led

In this program, the LED variable itself becomes the alarm. In a while loop,
a future update is scheduled for the LED variable after which the program
blocks until the update occurs. In Scoria, by writing to a variable associated
with an LED, the value of the LED is immediately propagated to the physical
LED.

1.2 Programs with Confidentiality Requirements

The second application domain investigated in this thesis is that of confidential
computing. Confidential computing is the act of protecting data in use. Data
always exists in one of three states. It can exist as data in motion, as data at
rest, or as data in use. Data in motion is data that is moving from one part of
the system to another, e.g. via TCP, while data at rest is data that is being
stored in persistent memory. Both of these kinds of data can be protected via
e.g. encryption. Encryption is enough to guarantee confidentiality in these
cases if you trust your encryption scheme.

Data in use, however, is a bit different. To perform any meaningful oper-
ations on data, it has to be loaded into the RAM. Consider the pseudo-code
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below, that stores secrets persistently in an encrypted data store. For illus-
trative purposes, the data store variable is used as if it represents the data
directly, but can also represent a file handle or something more realistic.

ciphertext encrypted_data_store;

bool process_data(request req) {
// decrypt data store
plaintext decrypted = decrypt(encrypted_data_store);

// compute result of request
bool result = handle_request(decrypted, req);

// update the data store
plaintext new_data_store =
update_data_store(result, decrypted);

// encrypt and save data store
encrypted_data_store = encrypt(new_data_store);
return result;

}

void main() {
while(true) {
request req = await_request();
bool result = process_data(req);
print(result);

The code above consists of two parts. The first part is the main function,
that waits for and parses incoming requests. The second part is the application
logic. Here we decrypt the secret data, compute some result with it, update it,
and then encrypt it before we store it again.

A problem with this code is that the secret data is decrypted before it is
operated on. The result of this is that it exists in plaintext in the RAM of
the machine the code is running on, and an attacker running on the same
machine, such as a compromised operating system, might leak this data. This
is illustrated in figure 1.4.

To mitigate this vulnerability, we wish to modify the program such that
the secret data does not have to reside in RAM in a decrypted format. One
approach to achieve this is to apply fully homomorphic encryption [2] (FHE),
which encrypts the data such that it can be operated on directly. Drawbacks
with this approach are that fully homomorphic operations on encrypted data
are very slow and that there can be a substantial amount of noise added to
encrypted values. It takes an expert to write code that uses FHE such that
it is feasible to execute it, both in terms of execution speed and accuracy of



1.2. PROGRAMS WITH CONFIDENTIALITY REQUIREMENTS 11

Data in Encrypted
use Decrypted
Data at
rest encrypted_data_store encrypted_data_store
Time

Figure 1.4: The diagram illustrates that while the data is at rest, it exists in
encrypted form. When the data is operated on it is decrypted (as indicated by
the red color), before the updated data is encrypted and stored.

the result. Furthermore, there is a risk that the application logic becomes
obfuscated if the code is using FHE.

Another mitigation technique, which we investigate in this thesis, is using
TEEs to do confidential computing. The domain-specific abstractions we
investigate in this thesis are

e Using the type system to identify which components of an application
should reside in a TEE. If the return type of a procedure, or the type of
a variable, is secure, that entity is expected to reside in a TEE.

e Allowing the result of a secure computation to be accessed outside of the
TEE.

The above example, rewritten using these domain-specific abstractions,
becomes

secret plaintext data_store;

secret bool process_data(request req) {
// compute result of request
secret bool result = handle_request(data_store, req);

// update the data store
secret plaintext new_data_store =
update_data_store(result, data_store);

// save data store
data_store = new_data_store;
return result;

}

void main() {
while(true) {
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request req = await_request();
bool result = inTEE(process_data(req));
print (result);

}

The type of the data store is now secure plaintext, denoting that it
resides in the TEE and that there is no need to protect the data further by
encrypting it. Similarly, the procedure process_data now returns a secret
bool, indicating that the procedure exists in the TEE. Procedures in the TEE
are allowed to inspect secret variables, whereas if a procedure outside of the
TEE tries to inspect secret data, an exception is raised. The main procedure,
which resides outside of the TEE, invokes a procedure in the TEE by means of
the inTEE method, which invokes a secret procedure and extracts its result.

The point of using a TEE is to put as little code as possible in it. If the
code inside the TEE is compromised, the entire TEE is likely compromised.
To this end, the (usually) very large operating system resides outside of the
enclave. By using the type system to encode what is confidential or not, the
non-trivial task of partitioning a program can be done automatically by the
compiler, yielding a smaller executable for the TEE.

The second paper in this thesis presents the DSL HasTEE, which uses the
type system of Haskell to discover which part of an application should execute
in a TEE, and which part should reside outside. An application is partitioned
automatically, and communication between the two components is inserted.
The above program can be written in HasTEE, as shown below

processData :: Enclave (Ref DataStore) -> Request -> Enclave Bool
processData erd req = do
ref <- erd

dataStore <- readRef ref

let result = handleRequest dataStore req
writeRef ref (updateDataStore result dataStore)
return result

main :: App Done
main = do
ref <- liftSecureRef InitialEmptyDataStore
procData <- secure $ processData ref
runClient $ do
sequence $ repeat $ do
req <- await
result <- onEnclave $ procData <.> req
putStrln $ show result

A Haskell developer will be very productive, very quickly, using Has-
TEE. The only HasTEE-specific language abstractions are two monads, called
Enclave and Client, which denote what must go into the TEE and what
may not. The above program will be partitioned into two components where
processData will end up in the TEE, and main will remain outside.
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1.3 Background

This section describes core topics that are relevant to this thesis. The first topic
is Embedded Domain-specific Languages, as the research presented in this thesis
has been carried out by implementing embedded DSLs. After this, a section
about Synchronous Programming Languages follow, as the DSL presented
in paper one, Scoria, belongs to the class of synchronous languages. The
last two topics relate to the DSL presented in paper two, HasTEE. They are
Information-flow Control and Trusted Execution Environments.

Embedded Domain-specific Languages Implementing a programming
language requires considerable engineering effort. At the very least, a parser
and interpreter has to be implemented. More than often there are many more
phases involved, such as type checking, renaming, etc.

A lot of engineering effort can be spared by implementing a language as
an embedded language. An embedded language is implemented in another
language, called the host language, as a library. By embedding a language in a
host language, many phases from the host compiler can be directly inherited
by the new language, such as the parser, type checker, code generator, etc.

Languages can be embedded in either a shallow or deep fashion. When
using a shallow embedding, an embedded program is executed during host
language execution time. For better or worse, this means that the embedded
language inherits the host language’s runtime. A deep embedding, in contrast,
will produce syntax during the language execution time, which can later be
compiled and run independently of the host language. In such a scenario
we have two distinct execution times, the host language execution time, and
the execution time of the generated code, the embedded language. The host
language becomes a very powerful meta-language for meta-programming in the
embedded language. This is a result of the two execution times — the execution
time of the host language and the execution time of the embedded language.
During host language execution time, programs in the embedded language can
be combined, manipulated, and optimized to produce other programs.

To illustrate this point we use an example from the Scoria language presented
in this thesis.

wait :: [Ref] -> SSM ()
fork :: [SSM (O]
procedure -- synthesize procedure

The wait procedure takes a list of references as input, and blocks until
either of them has received an update. fork spawns any number of concurrent
child processes, and blocks until all of them have terminated. procedure
takes a Haskell function body and turns the function into a procedure in the
embedded language.

Something missing from Scoria, but that we can implement with the help
of the host language, is a variant of the wait procedure that blocks until all
references have received updates.
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waitSingle :: Ref -> SSM (O
waitSingle ref = procedure $ do
wait [ref]

waitAll :: [Ref] -> SSM Q)
waitAll refs = fork $§ map waitSingle refs

waitSingle creates an embedded Scoria procedure which, during Scoria
execution time, waits for a single reference to receive an update. waitAll is a
Haskell function which, during Haskell execution time, takes a list of references
and produces a fork statement that, during Scoria execution time, produces
child processes that each invoke waitSingle with one of the references. Since
fork does not terminate until all child processes terminate, waitAll will not
terminate until all references received updates. The code exploits the fact that
waitAll is executed during Haskell execution time, and expands into code that
is executed during Scoria execution time.

A code-generating EDSL can exploit the two execution times to perform
partial evaluation[3], by specializing the embedded program during the host
language execution time. A compiler optimizes a program by applying rewrite
rules, turning a value of a syntactic domain into another value of the same
syntactic domain. By embedding a language inside a host language, the host
language can transform program fragments of the embedded language into
values of a semantic domain that the host language can evaluate. The result of
this evaluation can then be reified to yield a new value in the syntactic domain
again.

While these are some arguments in favor of EDSLs over DSLs, there are
also arguments against EDSLs. Three of the more prevalent arguments against
EDSLs are

e The syntax of the embedded language is influenced by the choice of
host language. A dedicated DSL will have its own parser that supports
domain-specific syntax.

e The choice of host language can have an impact on developer efficiency.
If a language is embedded in e.g. Haskell, a Haskell developer is better
situated to exploit Haskell features to write clever programs.

e As an embedded program is written in a host language, error messages
from the host language are inherited. These may be more complicated
than necessary and can reflect implementation details that don’t concern
the application developer.

Synchronous Programming Languages Synchronous languages were
developed to facilitate the development of applications that react to their
environment. Execution is divided into discrete, successive instants, where at
each instant, the program may react. Reactions are conceptually instantaneous.
This model of execution makes it easier to reason about the behavior of a
program over time.
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Figure 1.5: A depiction of a dataflow program made up of nodes. The whole
program accepts three inputs and computes one output. Notice that a node
can depend on its output in the previous instant by feeding the output back as
an input signal. This models a form of memory.

Hardware designers have devoted themselves to synchronous circuit design
for decades. A circuit is a reactive system that upon every clock cycle, recom-
putes all outputs. This is also referred to as dataflow programming, and is
illustrated in 1.5.

Drawing inspiration from this, french researchers in the 1980s did seminal
work on synchronous languages in the form of the languages Lustre [4], Esterel
[5], and Signal [6]. Lustre and Signal are dataflow languages, while Esterel is
an imperative language.

The two main concepts in Lustre are those of streams and nodes. A stream
is an infinite sequence of values, where a value need not be present at every
instant. Consider the stream X that counts up at every instant, and the stream
EVEN that filters out the even numbers.

instant 1,2,3,4,5,6,7,8,9,10,11,12,...

X = [1,2,3,4,5,6,7,8,9,10,...
EVEN [ 2, 4, 6, 8, 10,...

Whereas X is present at every instant, EVEN is only present at every other
instant. New streams can be computed from existing streams.

X = [1,2,3,4,5,...
Y = [6,2,3,4,9,...
X+Y-=1[7,4,6,8,14,...

The expression X + Y is only valid if X and Y are defined in the same
instants. The expression X + Y has no meaning if either X or Y doesn’t have a
value, and the program is rejected by the Lustre compiler. It is common to
refer to a stream as having a clock that ticks at those instants where a value is
present. In the example with the streams X and EVEN, the clock of X ticks at a
certain rate, and the clock of EVEN ticks at half the rate of X.

As streams such as X + Y depend on other streams, X + Y reacts when X
and Y are present. Reactions such as these are conceptually instantaneous,
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giving rise to the term synchronous languages, as inputs and outputs appear
synchronised.

Esterel takes a different view of synchronicity. Instead of nodes in a dataflow
graph reacting to input events, Esterel declares nested threads that may react
to broadcasted signals. Threads may suspend while waiting for a signal, and
when the signal is broadcasted in an instant, the thread reacts instantaneously.
The signal does not persist until the next instant. Esteral is an imperative
language with common control-flow statements, such as loops and conditionals.
While it is not labeled as a dataflow language, the compiler will still construct
a dataflow graph from the input and inspect it to ensure that the program is
deterministic.

These synchronous languages a compiled down to a single function that
takes the inputs in the current instant and computes the outputs. This
function, which we refer to as the step-function, is what conceptually finishes
instantaneously. Common to all these synchronous languages is that despite
being able to create clocks and use them to specify temporal behavior, a
program is still ultimately governed by a global clock. Clocks can be derived
from other clocks, such as how the EVEN clock was derived from X, but regardless
of which clock a node has, upon every tick of the global clock, the step function
is invoked. This is depicted in figure 1.6.

Furthermore, while these synchronous languages were designed for specifying
temporal properties, their sample-driven nature makes them unable to specify
concrete time values. A node can specify behavior in one instant, in relation to
other instants. There is not, however, a way to say e.g. wait for two seconds.
A node can have an input stream that it assumes has a certain clock, but it is
then up to the runtime system to supply the requested clock.

Stephen A. Edwards and John Hui [7] recognized that giving meaning to
every instant by invoking the step function at every tick of a global clock
can be wasteful. In some application domains, such that that of Internet of
Things, a device may spend long periods doing nothing. During these periods,
regardless of whether they are periodic or aperiodic, the program should not
have to react to any clock events. This lets the device the program executes on
conserve power. This observation, together with a desire to be able to specify
concrete, precise temporal behavior natively, lead to the Sparse Synchronous
Model (SSM).

In SSM, not all instants are assigned meaning, as shown in 1.7. Temporal
behavior such as wait for two seconds can be expressed natively, as compu-
tation is not driven by a base clock. Time is a first-class citizen, and can be
treated as any other value. As time is not expressed in terms of instants, but
expressed natively, it is possible to skip over instants. A SSM program is made
up of processes, similar to Esterel. Threads may spawn other threads and
communicate to them via scheduled variables.

foo(&a)
wait a
a=ax*x 2
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Figure 1.6: Upon each tick of the global clock, the step function is invoked,
and the whole program is evaluated for the instant denoted by the index of the

tick.
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Figure 1.7: In contrast to the synchronous model, the sparse synchronous
model allows the runtime system to not invoke the step function upon every
tick of the global clock.

bar (&a)
wait a
a=a+4

main()
var a = 0
after (1 second) a 1
fork bar(a), foo(a)

In the above example, the variable a is used to transmit signals. The fork
statement will spawn concurrent child processes bar and foo. The processes
block until a receives an update, which it does after one second, as scheduled
by the main procedure before the children were forked. To ensure determinism,
processes are ordered by a priority that is derived from their parents’ priority,
and their syntactic order in a fork statement. The above program will first
give a the value 1 when one second has passed, after which bar wakes up and
adds 4 to it. Then foo wakes up and multiplies a with two, yielding a final
value of 10 for a.

Another synchronous language that was developed at the same time as
SSM is Lingua Franca (LF) [8]. LF uses the abstraction of reactors instead of
threads or nodes. Actors are used to model concurrent processes in languages
such as Erlang. Actors communicate by sending messages to each other but
allow for non-determinism by not ordering messages. The reactors in LF assign
an ordering to every message, yielding a deterministic program. A LF program,
much like Lustre, declares a static dataflow graph, whereas SSM defines a
dynamic dataflow graph that grows and shrinks as the program is running.
Unique to LF is that it is a polyglot language. The logic of each reactor can be
given in many different languages.

Information-flow Control Information-flow control [9] (IFC) is a security
mechanism that ensures that data propagates through a program in such a way
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that some security policy is not violated. Values are labeled with a security
level that is tracked, and a value of one security level can not influence a value
of a lower security level, as information about the more secure value can leak
to the value of a lower security level. The property that no data is leaked in
this way is called noninterference.

As a simple example, we describe a language with two security levels, public
and secret. We assume that anyone can inspect a program’s public input and
output. The pseudo-code below denotes security levels explicitly in the type
signature of the procedure.

public int f(secret int x, public int y) {
y =%
return y;

}

The above program is ill-formed, as the secret input is assigned to the
public output before it is returned. This is an explicit leakage of information.
Implicit leakages are also possible, as in the program below.

public bool f(secret bool x, public bool y) {
if(x) {
return y;
} else {
return (not y);
}
}

By inspecting the output we can infer what the secret input was, even
though we never directly assign the secret input to the public variable y. Note
that in both cases, the program would be accepted if we labeled the output as
secret.

IFC policies can be enforced statically, dynamically, or through a combina-
tion of both. A static policy is checked before a program is allowed to execute,
whereas a dynamic policy is checked at runtime. If the policy is violated,
execution is aborted and an error is raised.

If a value could never be downgraded to a lower security level, however,
then it would be difficult to write any meaningful program that uses different
security levels. A principled way to release secrets is to explicitly declassify
values, giving them a lower security level.

secret string stored_pass;

public bool check_password(public string password) {
secret outcome = compare(stored_pass, password);
return declassify(outcome);

The result of comparing the stored password against the candidate password
must be secret, as we had to use the secret stored password to do the comparison.
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Before the resulting boolean can be released as a public outcome, we must
declassify it.

Regardless of whether you use static IFC, dynamic IFC, or a hybrid variant
of TFC, the threat model assumes that the operating system and runtime
system are trusted. In the presence of a compromised operating system, which
we assume can inspect any memory it desires, it does not matter what label
a piece of data has. The operating system can inspect and leak it. In this
thesis, we investigate how we can strengthen this threat model by using TEEs
to store the secret values. Since the TEE does not need to trust the operating
system, the secrets inside should remain safe even if the operating system is
compromised.

Trusted Execution Environments To protect data in use, every major
hardware vendor is working on support for hardware-enforced trusted execution
environments (TEE). Intel is developing its Intel Software Guard Extensions
(Intel SGX)[10], Arm is developing Arm TrustZone[11], AMD is developing
different variants such as AMD-SEV[12], AMD-SME, and AMD-SEV-SNP, to
name just a few. A TEE allocates a contiguous region of memory that contains
both secure code and data. This region of memory is then protected by the
hardware, where the protection mechanism varies between hardware vendors.
The purpose is that e.g. a compromised operating system can not read this
memory.

Intel SGX refers to such protected memory regions as enclaves, and protects
them via encryption by the CPU. Code and data are decrypted when they
move into the CPU cache, and encrypted when it leaves the CPU cache. This
constant encryption and decryption add significant overhead. When untrusted
code invokes a trusted method in an enclave, the time it takes to just perform
the function call is upwards of 35 times slower.

In contrast to Intel SGX, Arm TrustZone uses hardware isolation to sepa-
rate the memory accessible by untrusted software and trusted software. No
encryption is needed, as untrusted memory can not access trusted memory.
Performance seems to be better than that of Intel SGX, but there are still
overheads [13] compared with using no TEE at all.

The programming model for TEEs requires the developer to partition their
application into two components. One component executes inside the TEE,
while the untrusted component executes outside. The untrusted components
drive the execution and may perform remote procedure calls in the application
inside the TEE, which in turn can call out of the enclave if it requires so.
If untrusted code tries to access trusted data, an error will be raised. This
configuration is illustrated in figure 1.8.

While this sounds simple enough, it is in practice quite complicated. Aside
from technical complexity concerning the maintenance of toolchains, actual
application development is not trivial. Managing two projects and an interface
between them takes some effort. The TEE application is much more restricted
in what it can do as some operations are inherently leaky. As an example,
applications intended to run on Intel SGX need to be compiled with a restricted
version of the C standard library, where many ordinary functions are missing.
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Figure 1.8: The diagram illustrates that an application using a hardware-
enforced TEE to protect its secrets needs to be partitioned into two parts. The
part outside of the TEE can perform remote procedure calls in the application
executing inside the TEE. Arrows indicate remote procedure invocations.

This makes it difficult to port legacy applications to run on Intel SGX, as
these applications were written with the assumption that they can access the
whole standard library. To ease the porting of legacy applications to Intel
SGX, projects such as Gramine have emerged (previously called Graphene [14]).
Gramine is a library OS that reintroduces the missing functionality from the
restricted standard library, enabling any Linux binary to run unmodified.
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