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Abstract
IoT applications are often developed in programming lan-
guages with low-level abstractions, where a seemingly in-
nocent mistake might lead to severe security vulnerabilities.
Current IoT development tools make it hard to identify these
vulnerabilities as they do not provide end-to-end guarantees
about how data flows within and between appliances. In this
workwe present Haski, an embedded domain specific language
(eDSL) in Haskell for secure programming of IoT devices. Haski
enables developers to write Haskell programs that generate
C code without falling into many of C’s pitfalls. Haski is de-
signed after the synchronous programming language Lustre,
and sports a backwards compatible information-flow control
extension to restrict how sensitive data is propagated and mod-
ified within the application. We present a novel eDSL design
which uses recursive monadic bindings and allows a natu-
ral use of functions and pattern matching to write embedded
programs. To showcase Haski, we implement a simple smart
house controller where communication is done via low-energy
Bluetooth on the Zephyr IoT OS.

CCSConcepts: • Software and its engineering→Domain
specific languages; • Security and privacy→ Information
flow control.

Keywords: Synchronous programming, Information-flowCon-
trol, eDSL, IoT, Haskell
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1 Introduction
The Internet of Things (IoT) conceives a future where “things”
(embedded electronics) can be interconnected. While a com-
pelling vision, recent events have demonstrated the high vul-
nerability of IoT (e.g., [Bertino and Islam 2017; Fernandes et al.
2016; Schuster et al. 2018; Wang et al. 2018]). Hence, it has
become important to develop security solutions which address
the concerns of unauthorized access to data and privacy loss.
We believe there are two major aspects which contribute

to the current poor state-of-the-art in IoT security: the cho-
sen programming languages for development and the lack of
end-to-end guarantees. IoT development is often done in pro-
gramming languages (like C) with low-level of abstractions,
where a seemingly innocent mistake might lead to severe vul-
nerabilities like buffer overflows. Similarly, development tools
present no end-to-end guarantees about how data flows within
and between devices—thus making it hard to confine sensitive
information.
Figure 1 shows the running example throughout this pa-

per: a simplified smart house controller called Halexa. Halexa

Figure 1. A Smarthouse example
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consists of a micro-controller with Wifi access (required to
fetch software updates) which is connected to three Bluetooth
devices: a thermometer, a motion sensor, and a window. The
micro-controller software is responsible for opening the win-
dow when it is too hot inside the house. We assume that there
is no Air Conditioning in the house—not an uncommon as-
sumption in, for example, Nordic countries. While simple, this
scenario presents interesting security and safety concerns: (i)
to avoid robbery, windows must only be opened when there
is someone at home, and (ii) the motion sensor data should be
kept confined within the system and not leaked via Internet—
leaking it can hint burglars about the vacancy of the house.
Observe that the micro-controller needs to have access to
the sensors’ data in order to deliver its function. Can we use
Haskell to program constrained devices and ensure the men-
tioned security requirements by construction?
In this paper, we present Haski, an embedded domain spe-

cific language in Haskell for secure programming of IoT de-
vices. Haski enables developers to write Haskell programs
that generate C code without falling into many of C’s pitfalls
(e.g., those related to memory safety, undefined behavior, etc.).
Haski follows the footsteps of the synchronous programming
language Lustre [Caspi et al. 1987; Halbwachs et al. 1991],
which is an event-driven programming language with strong
guarantees on resource usage—a must when programming
low-power devices often found in IoT systems. Haski enhances
Lustre with confidentiality and integrity security guarantees,
as well as a means of communicating with streams generated
by callback functions.
By adopting a synchronous programming model, Haski is

able to provide resource bounds while removing memory-
based security vulnerabilities by construction. Haski’s design
and implementation is unique compared with previous Haskell
eDSLs for Lustre-like languages [Bjesse et al. 1998; Hawkins
et al. 2011]. Firstly, Haski presents a novel monadic design
which allows programmers to leverage Haskell’s monadic
bindings (i.e., do and mdo) to specify streams as literate as
possible. Secondly, Haski conceives a new DSL technique to
compile Haskell functions on Haski-expressions into callable
components of the target language. Finally, Haski provides
user-defined enumeration types, where developers can simply
use Haskell’s case expression to inspect them, while raising
a type-error in case of non-exhaustive patterns—thus mak-
ing the code more robust. To address end-to-end guarantees,
Haski incorporates information-flow control (IFC) techniques
[Sabelfeld and Myers 2003] to restrict how data propagates
and gets modified—thus protecting the confidentiality and
integrity of data. With IFC, developers can, for instance, incor-
porate third-party Haski code to analyze sensitive data like
that coming from the motion sensor while still preventing data
leaks. To keep the types in eDSL simple, Haski enforces IFC
at code-generation time by only tracking data propagation
among end-points streams indicated by developers, e.g., the

thermometer, motion sensor, window and Internet communi-
cation channel in Figure 1.

Contributions. The main research contribution of this pa-
per is the design and implementation of Haski. We show how
to design a synchronous language that is type-safe, protects
confidentiality and integrity of data, handles I/O, and generates
C code. Importantly, our design does not require any modifi-
cations to GHC or the use of compiler plug-ins. Instead, Haski
uses embedding techniques by leveraging advanced type-level
features of GHC such as GADTs [Peyton Jones et al. 2006],
data kinds [Yorgey et al. 2012], existential types, and pattern
synonyms [Pickering et al. 2016]. Some of the techniques de-
veloped for Haski can be generalized and used for general DSL
design in Haskell.

2 Haski by Example
Haski programs are written in Haskell using a special set of
combinators. In this section, we illustrate various examples
of Haski programs and showcase these combinators. For the
upcoming examples, we use the data type Action to represent
an action indicating whether our user Octavius has left (or
entered) the house.

data Action = Left | Entered

The purpose of the Action data type (instead of, for example,
Bool) is to illustrate the use of user-defined data types in Haski
programs.

Recursive definitions. A Haski program is a collection
of stream definitions written in the Haski monad. A simple
stream can be defined using the letDef combinator, which has
the following type.

letDef :: Stream a→ Haski (Stream a)

Using Haskell’s do notation, we can use this combinator to
bind streams to variables as follows.

left :: Haski (Stream Action)
left = do
x ← letDef (val Left)
return x

This program defines the constant stream that repeats the
action Left as Left, Left, Left, ... using the combinator val ::
HT a ⇒ a → Stream a. The type constraint HT ensures
that a type is recognized by the Haski compiler and can be
compiled by it. In this case, we may suppose that Action al-
ready satisfies this constraint, but we will later see how this is
made possible.

Streams may also be defined recursively using the fby com-
binator (read followed by).

fby :: HT a⇒ a→ Stream a→ Haski (Stream a)
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The stream v ‘fby‘ s begins with the value v and is followed
by the stream s. For example, we can define a stream of alter-
nating actions such as Left, Entered, Left, Entered, ... using the
fby combinator as follows.

alt :: Haski (Stream Action)
alt = mdo
x ← Left ‘fby‘ y
y ← Entered ‘fby‘ x
return x

The stream x here defines a stream that begins with Left and is
followed by y. Similarly, y begins with Entered and is followed
by x. We use the keyword mdo1 instead of do for (mutually)
recursive definitions.

Pattern matching definitions. Streams can also be de-
fined by pattern matching on values of other streams using
the match combinator.

match :: (FinEnum a, Streams b) ⇒ Stream a→ (a→ b) → Haski b

The combinator application match e f defines the streams
resulting from applying the observed value of e to f . The
definition of f enables pattern matching on the value of e.
The type constraint FinEnum subjects the type a to be finitely
enumerable, and the constraint Streams overloads the type b
to allow the function f to return multiple streams such as
lists or tuples of streams. The constraint FinEnum ensures that
match can only be used to pattern match on streams with
finitely many values—a restriction which later enables code
generation.
To illustrate the use of match, let us implement a simple

cache mechanism that accepts requests to read and write ac-
tions, and responds with the last-written action, beginning
with Left. Let us represent the request protocol using the data
type Req.

data Req = Read | Write Action

Evidently, Req is finitely enumerable since it has only three
possible values: Read, Write Left, and Write Entered. Hence
we may use match on a stream req :: Stream Req as follows.

...

resp← req ‘match‘ λcase
Read → state
Write x → val x

state← Left ‘fby‘ resp
...

We shall use ellipses (...) in the code to hide the parts that are
not relevant to the point being made. The response stream
resp is defined by matching against the request stream req,
where the second argument is a lambda-expression which

1Enabled by the RecursiveDo extension

pattern matches on its argument. We write λcase instead of
λx → case x of ...2.

The combinator match allows us to leverage the benefits of
pattern matching in Haskell (such as variable binding, wild
cards, guards, etc.) to generate code with simpler branching
operators in the target language. For example, the definition
of resp which pattern matches on req in the previous example,
generates the following C code.

switch (req) {
case READ → resp = ...
case WLEFT → resp = ...
case WENTERED→ resp = ...
}

The cases are representative of the C values generated for the
Haskell values of type Req.
A pattern match performed using match must handle all

possible cases, and is enforced by the Haski compiler. If we
leave out one of the cases in the above example, the Haski
compiler throws an error such as the following—with line-
numbers!
ghci> compile ...
*** Exception: Cache.hs:(20,18)-(21,22):
Non-exhaustive patterns in case

Nodes. The stream req in the previous example has not been
defined locally, and we wish for it to be a variable which can be
substituted for by different contexts. Nodes allow us to define
subprograms that abstract over stream expressions such as req,
and thus enable an external caller to supply them. In Haski,
nodes are written as Haskell functions, as shown below.

cache :: Stream Req→ Haski (Stream Action)
cache = node "cache" $ λreq→ mdo

resp← req ‘match‘ λcase
Read → state
Write x → val x

state← Left ‘fby‘ resp
return resp

A node is created using the node combinator by providing
a name string and a function as arguments.

node :: (Arg a, Box b) ⇒ String → (a→ b) → (a→ b)

The name string is used to identify a node uniquely during
compilation, and the function defines the body of the node.
The type constraints Arg and Box together ensure that the
function a→ b accepts streams as arguments and produces a
stream result in the Haski monad, i.e., has a type of the shape
Stream a′→ Stream b′→ ....→ Haski (Stream res).

Notice that the function which defines a node itself need not
be inside theHaskimonad asHaski (Stream a′→ Stream b′→

2Enabled by the LambdaCase extension
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....→ Stream res). This allows for a more natural type to be as-
signed to a node, and for them to be called and used as regular
Haskell functions without any special combinators. For exam-
ple, wemaymap over a list of streams asmapM cache (requests::
[Stream Req]) to generate a list of responses, each correspond-
ing to a call of the node cache.

Compiling the node cache generates code which resembles
the following in C.

typedef unsigned short Enum;
struct cache_mem {Enum action; };
Enum cache_step (struct cache_mem ∗ self , Enum req) {
...

return resp;
}

We shall return to the specifics later, but for now we simply
observe that the node cache is compiled to a C function with
an additional argument self . This argument maintains the
internal state of the returned stream, which in this case is the
last-written action. Also note that both the types (Req and
Action) have been compiled to values of type Enum, which
represents a small positive integer—a simplifying assumption
made for all finitely enumerable types.

Primitive types and operators. The Haski compiler sup-
ports standard primitive types of fixed size such as Bool, Int,
etc.

instance HT Bool where ...
instance HT Int where ...

-- similarly for other primitive types

The luxury of pattern-matching is limited to finitely enu-
merable types. Now suppose that we wish to adapt our cache
example to a read and write integers instead of actions. Inte-
gers are not considered to be finitely enumerable for practical
reasons, which means that we cannot use a Haskell data type
with an integer in it for patternmatching. Instead, wemust sep-
arate the request from the integer payload into two separate
streams as follows.

data Reqi = Read | Write

cachei :: Stream Reqi → Stream Int → Haski (Stream Int)
cachei = ...

To program streams whose types are not finitely enumer-
able, we resort to the primitive operators supported by the
compiler. Haski supports a fixed set of operators that are rec-
ognized by the target environment. These operators are over-
loaded when possible (e.g., +, ∗, etc.) and provided separately
otherwise (e.g., gtE).

(+) :: Stream Int → Stream Int → Stream Int
(∗) :: Stream Int → Stream Int → Stream Int
gtE :: Stream Int → Stream Int → Stream Bool
...

Sampling operators. In addition to primitive operators,
Haski also supports sampling operators calledwhen andmerge
(from Lustre) for projecting and combining streams.

when :: FinEnum b⇒ Stream a→ (Stream b, b) → Stream a
merge :: FinEnum a⇒ Stream a→ (a→ Stream b) → Stream b

The operatorwhen allows us to project streams to slower ones:
the stream s1 ‘when‘ (s2, x) produces the value of s1 only when
the value of s2 is x. Operator merge, on the other hand, is a
restrictive version ofmatch that requires the streams returned
by the function argument to be mutually complementary (i.e.,
at most one stream must produce a value at a time). As we
will see in the next section, merge is in fact used to implement
match.

Labeling primitives. Streams which contain sensitive in-
formation can be labeled with a sensitivity level. Labeled
streams are given the type LStream a, and may be understood
as streams wrapped in a secure container whose access is con-
trolled using specific primitives. A stream can be labeled and
unlabeled using the primitives label and unlabel respectively,
and the label of a stream can be queried using the labelOf
primitive.

label :: Label → Stream a→ Haski (LStream a)
unlabel :: LStream a→ Haski (Stream a)
labelOf :: LStream a→ Haski Label

To understand the use of these primitives, let us implement a
new version of the cache node where the request and response
have been labeled. One reason to do this may be because we
wish to keep the actions of a user of our system confidential. To
implement the same behavior as before, we must now use the
labeling primitives explicitly to label and unlabel the streams.

secCache :: LStream Req→ Haski (LStream Action)
secCache = node "secCache" $ λreql → do

resp← unlabel reql >>= cache
ℓ ← labelOf reql
respl ← label ℓ resp
return respl

The code above unlabels the stream reql as unlabel reql . This
raises the senstivity level of the program secCache to the label
of reql (also known as tainting), which forces all subsequently
labeled streams (like respl) to be at least as sensitive as reql .
The sensitivity level of the program is then used by an admin-
istrator to enforce security policies on the program during
compilation—as we shall see in Section 5.

3 Overview of Haski compiler
Haski at its core is an embedding of Lustre in Haskell with sup-
port for IFC. This means that Haski enables the use of Haskell
as a host language to write Lustre programs. A Lustre program,
much like Haski, is a system of stream bindings accompanied
by a collection of nodes invoked by them. Compiling a Haski
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Figure 2. Phases of eDSL compilation. The dashed arrow de-
notes a sequence of well-known compilation passes used to
compile Lustre nodes [Biernacki et al. 2008].

program first builds a Lustre program, and then compiles it to
C—thus generating low-level code as in the examples of the
previous section.

The compilation function compile::HT a⇒Haski (Stream a)
→ IO () compiles a Haski program and generates C code as
a side-effect. Compilation builds a "main" node for the given
program, which then acts as the point of invocation for the en-
tire program. Note that the program is restricted to producing
an output whose type satisfies the HT constraint. This means
that, although the program may use any Haskell types, its
result must be of a type supported by the target language. This
restriction, in combination with similar type constraints on the
combinators, ensures that the use of Haskell’s features that are
not supported by the target environment (such as higher-order
functions) are "evaluated away" during compilation time.
The compilation of a Haski program is achieved in two

phases (see Figure 2): the Embedding phase constructs a list of
Lustre nodes from a Haski program, and the Lustre phase then
compiles the nodes to C functions. The first phase is imple-
mented using a combination of deep and shallow embedding
techniques, and consists of the compilation passes building
and node parsing. The second phase, on the other hand, trans-
forms Lustre nodes to C functions via an intermediate object-
oriented language called Obc. This phase involves a sequence
of compilation passes such as clock inference, normalization
and scheduling, that are well-known in Lustre compilers [Bier-
nacki et al. 2008].
The Lustre phase is implemented using a modular clock-

directed compilation approach that is well-studied and has
even been formally verified [Auger et al. 2012; Bourke et al.
2017]. We implement the passes in this phase by repeatedly
traversing the abstract syntax tree of Lustre nodes and anno-
tating it with the result of each phase (following Najd and
Jones [2017]). Our implementation of this phase is a straight-
forward adaptation of earlier work, and we do not discuss the

data HaskiSt = HaskiSt {defs :: [Def ], ... }
type Haski = State HaskiSt

data Def where
Let :: HT a⇒ Var a→ Stream a→ Def
Arg :: HT a⇒ Node→ Var a→ Stream a→ Def
Res :: HT a⇒ Node→ Var a→ Stream a→ Def

data Stream a where
Var :: HT a⇒ Var a→ Stream a
Val :: HT a⇒ a→ Stream a
Fby :: HT a⇒ a→ Stream a→ Stream a
When :: (FinEnum a) ⇒ Stream a

→ (Stream b, b) → Stream b
Merge :: (FinEnum a) ⇒ Stream a

→ Vec (Stream b) (Size a) → Stream b
-- plus primitive operators

type Var a = String
type Node = String
class (Bounded a, Enum a) ⇒ FinEnum a where

type Size a :: Nat

Figure 3. Types used to implement Haski

details in this paper. Instead, we focus on the implementation
details of the first phase, which also forms the basis for the
IFC enforcement.

4 Haski as a Lustre Embedding
During the building pass, each line of a Haski program written
using one of the combinators builds a corresponding inter-
mediate definition under the hood of the Haski monad. These
definitions are then parsed to construct a complete Lustre pro-
gram in the node parsing pass. The purpose of this section
is to describe the implementation of the building pass, and
outline the action performed by the node parsing pass.

4.1 Building Recursive Definitions
The streams defined in the Haski monad are collected as a list
of definitions. When run with an appropriate initial state, a
Haski program produces a list of definitions which correspond
to components of Lustre nodes. Definitions are denoted by
the Def data type, and expressions by Stream (see Figure 3). A
definition may be a simple binding that binds a variable with
a stream expression (Let), or an argument (Arg) or result (Res)
of a node call.

The program alt from Section 2 builds the following defini-
tions under the hood of the Haski monad.

Let "x" ((Val Left) ‘Fby‘ vy)
Let "y" ((Val Entered) ‘Fby‘ vx)
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where vx = Var "x" and vy = Var "y". We use the same
variables names as in the original program for readability,
but this can also be implemented automatically with some
compiler support [Mista and Russo 2020].
Let us now turn to the implementation of combinators in

the Haski monad. The combinator fby is implemented using
the letDef combinator as follows.

fby :: HT a⇒ a→ Stream a→ Haski (Stream a)
fby x s = letDef (Fby x s)

The combinator letDef is in turn implemented by adding a Let
binding with a fresh variable name to the list of definitions in
the Haski monad.

letDef :: Stream a→ Haski (Stream a)
letDef s = do
x ← freshVar
addDef (Let x s) -- updates state (‘defs‘)
return (Var x)

It returns the variable in place of the original stream expression,
thus replacing any use of the expression in later definitions
with this variable. Returning a variable is the key to enabling
recursive definitions without sending the Haski compiler into
an infinite loop.

As fby, the implementation of match also builds definitions
containing expressions under the hood, but is slightly more
involved since match is derived from other expressions. We
discuss this next.

4.2 Building Pattern Matching Definitions
The combinator match is overloaded in its function argument
by the class Streams which has the following instances.

class Streams b where
match :: (FinEnum a) ⇒ Stream a→ (a→ b) → Haski b

instance Streams (Stream b) where ...
instance Streams b⇒ Streams [b] where ...
instance (Streams b, Streams c) ⇒ Streams (b, c) where ...

-- similarly for other “containers”

The overloading allows the matching function a→ b to return
multiple streams, such as lists or tuples of streams. In this
section, we shall discuss the implementation of the instance
Streams (Stream b). We skip the remaining instances since
their implementation is mostly mechanical component-wise
applications of match.
The combinator match provides a convenient interface for

defining streams using the more fine-grained sampling oper-
ators When and Merge. For instance, the stream resp in the
cache example from earlier defined using match on req, builds
the following definition.

Let "resp" (vreq ‘Merge‘ [
vstate ‘When‘ (vreq, Read)
, (Val Left) ‘When‘ (vreq,Write Left)

, (Val Entered) ‘When‘ (vreq,Write Entered)
])

When can be understood as a projection of a stream using
another stream: the expression vstate ‘When‘ (vreq, Read) pro-
duces the value of vstate when the value of vreq is Read, and
nothing otherwise. In the Merge expression above, the vec-
tor (written using list notation) contains a stream for each
possible value of vreq. For every observed value of vreq, Merge
produces the value of the corresponding stream in the vector.
The use ofWhen ensures that the branches ofMerge are mutu-
ally complementary, which, as mentioned earlier in Section 2,
is a restriction that is required of Merge.

Now consider implementing the instance Match (Stream b),
where match has the type FinEnum a ⇒ Stream a → (a →
Stream b) → Haski (Stream b). The matching function a →
Stream b is expected to return an expression for every possible
value of type a. To achieve the semantics of match illustrated
above, we must implement match using Merge. But notice
that Merge requires a vector argument of type Vec (Stream b)
(Size a) instead of a function, where Size a denotes the num-
ber of values that inhabit the type a. Using a vector forces
a Merge expression to provide as many stream expressions
as the number of values in the type a by construction, and
thus enables the generated code to also inherit this property.
This brings us to the question of implementing match: how
must we construct a vector of streams from a function which
returns them?
The solution to this problem is provided by the FinEnum

class, which requires all its instances to be both bound and
enumerable. Being bound and enumerablemeans that we could
enumerate all the values of an instance type. Additionally,
FinEnum is also finitely bound by the type family Size, which
provides a type-level natural number of kind Nat. This enables
us to enumerate the values as a vector of values, instead of
a list of values. Let a function enumerate which does this be
defined by the following class.

class FinEnum a⇒ Enumerable a (n :: Nat) where
enumerate :: Vec a n

Let us defer its implementation for the time being and simply
assume that enumerate :: Vec a (Size a) returns all the values
of type a.
Since the domain of the matching function is finitely enu-

merable, we can use enumerate to generate all possible ar-
guments to the function. Moreover, we can also apply the
function to the enumerated arguments to extract all possible
results of the function. Thus we have a way to extract all the
stream expressions returned by the function! This behavior
is implemented by the following function—named after “The
Trick” in partial evaluation [Jones et al. 1993].

theTrick :: FinEnum a⇒ (a→ b) → Vec b (Size a)
theTrick f = fmap f as

where as :: Vec a (Size a) = enumerate
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Equipped with theTrick, we implement the desired imple-
mentation of match as follows.

instance Streams (Stream b) where
match s f = letDef $
let body = theTrick f

whens = theTrick (λx → flip When (s, x))
in Merge s (zipWith ($) whens body)

We first construct the vector which contains the streams on
each branch of Merge in body :: Vec (Stream b) (Size a), and
then insert theWhen expressions by zipping it (by application)
with whens :: Vec (Stream b→ Stream b) (Size a).

Recollect from earlier that the matching function is enforced
to handle all the possible cases of its argument. We do not
need any additional checks to enforce this behavior because
this is already the case! If the function does not handle all
possible cases, the invocation of the function theTrick by the
compiler crashes with a Non-exhaustive patterns error—
which, lucky for us, is exactly what we need!

It remains to implement enumerate, which is straightfor-
ward induction on the Nat parameter as follows 3.

instance Enumerable a 1 where
enumerate = [minBound ]

instance (Enum a, Enumerable a n, n′∼n + 1)
⇒ Enumerable a n′ where
enumerate = succ (head ts) : ts
where ts :: Vec a n = enumerate

The first value in the vector is constructed using minBound
and the remaining elements are constructed by applying succ
on the previous value. These functions are provided by the
Bounded and Enum classes, respectively.

4.3 Building Nodes from Functions
As observed earlier, nodes are Haski subprograms that abstract
over streams. Nodes are given a more liberal type which allows
them to be regular Haskell functions that need not be defined
inside the Haski monad. But this creates a challenge: how do
we compile a Haskell function which represents a Haski node
to a data representation of a Lustre node? Moreover, we cannot
have a simple Def constructor that corresponds to a node call,
since Haski nodes are not called with a special combinator.
To solve this problem, we first note that result of a node

is always in the Haski monad. When applied, if we “register”
each argument of a node call as a separate definition in the
Haski monad, then we could recover the complete call in a
later pass (node parsing) which acts on the aggregated list of
definitions. The idea is to build definitions for a node when it
is called, such that the definitions retain sufficient information
for the node parsing pass to identify both the node and its call.
For instance, we wish to build the following definitions for the
call prevAct ← cache (Val Entered).
3Instance Enumerable a 1 requires the {-# OVERLAPPING #-} pragma.

class Arg a where
argDef :: Node→ a→ Haski a

class Res a where
resDef :: Node→ a→ Haski a

instance Arg (Stream a) where ...
instance (Arg a,Arg b) ⇒ Arg (a, b) where ...
instance Res (Stream a) where ...

Figure 4. Interface used to register a node call

Arg "cache" "arg_1" (Val Entered)
Let "resp" (varg_1 ‘Merge‘ [ . . ])
Let "state" ((Val Left) ‘Fby‘ vresp)

Res "cache" "prevAct" vresp

The body of the cache node (containing Let definitions) is
inlined at the call site by substituting its argument with a fresh
variable (varg_1) instead of the actual argument Val Entered.
From this invocation, we may recover both the body of the
cache node and its invocation which defines prevAct—which is
precisely the job of the node parsing pass. Multiple invocations
cause the body to be inlined multiple times, but the parsing
pass simply ignores them if a node with a specific name has
already been encountered.
Since functions may be partially applied, the arguments

must be registered as they are received. Moreover, once all
the arguments have been provided the resulting stream must
be registered as one resulting from a node call. To achieve
this, we shall wrap the function used to create a node inside
another function which has the same type, but is also equipped
with the ability to register the arguments and the result. This
sneaky behavior is implemented by the node combinator.

The functions argDef and resDef (see Figure 4) provide an
interface for registering arguments and result of a node. The
instances Arg (Stream a) and Res (Stream a) allow a stream
to be registered as an argument or a result respectively. Their
implementation is similar to letDef . Additionally, a pair of
arguments can also be registered by applying argDef on both
components of the pair. As we shall see shortly, this instance
has to do with registering multiple arguments.

The combinator node is implemented by “boxing” the given
function using a class Box which is overloaded in the return
type of the function. It has two instances, Box (Haski b) for
the base case where the function receives a single argument,
and Box (b → c) for the inductive case where the function
receives more than one argument.

class Box b where
node :: Arg a⇒ Name→ (a→ b) → (a→ b)

instance (Res b) ⇒ Box (Haski b) where
node name f = λe→ do
x ′← argDef name e
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r ← f x ′

r ′← resDef name r
return r ′

instance (Arg b, Box c) ⇒ Box (b→ c) where
node name f = curry (node name (uncurry f ))

In the base case instance Box (Haski b), the function f has
the type a → Haski b. To box this function, we register the
argument using argDef and call the function with the result
of the registration. This substitutes the occurrences of the
argument in the body of the function with the stream returned
by argDef . Finally we register the result of the function using
resDef and return the corresponding definition.

For the inductive case, observe that we need to box a func-
tion f :: a→ (b → c), and the instance declaration provides
us instances of Arg b and Box c as the induction hypotheses.
Additionally, we are also given an instance Arg a by the dec-
laration of the function node. The instances Arg a and Arg b
yield an instance forArg (a, b). Thus, using instancesArg (a, b)
and Box c, we can box the function f by currying it, and then
uncurrying back to return the desired result.

5 Information-Flow Control
Haskell is well-known for providing information-flow con-
trol (IFC) through security libraries. These libraries ensure
that code written using their API does not reveal secrets to
unauthorized parties. Many of the existing (monadic) secu-
rity libraries (e.g., SecLib [Russo et al. 2008], LIO [Stefan et al.
2011b], MAC [Russo 2015], and HLIO [Buiras et al. 2015]) are
designed for writing secure code. In this work, however, we
consider a different scenario where we would like to extend an
already existing DSL to provide IFC security while minimizing
changes to existing code. Following this goal leads us to the
design of an IFC enforcement where security checks are per-
formed at code-generation time rather than at runtime (like in
LIO) or type-checking (like in MAC). In this section, we give
a brief overview of IFC and explain the design choices of our
IFC enforcement for Haski.

5.1 Security lattices
IFC policies enforced by Haski are specified by a security lat-
tice [Denning and Denning 1977], which defines a partial order
between security levels (labels). These labels represent the sen-
sitivity of program inputs and outputs and the order between
them dictates which flows of information are allowed in a pro-
gram. Concretely, we write ℓ1 ⊑ ℓ2 if data at security level
ℓ1 can flow to data ℓ2 according to the security lattice. For
example, the classic two-point lattice L = ({L,H }, ⊑) classi-
fies data as either public (L) or secret (H ) and only prohibits
sending secret inputs into public outputs, i.e., H ̸⊑ L.

-- Labeled streams
data LStream a
-- Manipulation of labeled streams

labelOf :: LStream a→ Label
label :: Label → Stream a→ Haski (LStream a)
unlabel :: LStream a→ Haski (Stream a)
-- Current label

getLabel :: Haski a→ Haski Label
-- Label creep avoidance

toLabeled :: Haski (Stream a) → Haski (LStream a)

Figure 5. IFC interface for Haski

5.2 Enforcement design
We design a coarse-grained IFC enforcement [Vassena et al.
2019], where developers only provide label annotations to
security-relevant streams—rather than labeling every stream
in a program. A labeled stream of type LStream is implemented
by associating a stream expression with its label as follows.

data LStream a = LStream {getLabel :: Label, getStr :: Stream a}

The type LStream acts as an opaque container since its imple-
mentation is not exposed to the programmer. For instance, the
labeled stream LStream Halexa (val 42) is a constant stream
that is confidential to the smart house controller Halexa .

Figure 5 shows Haski’s IFC interface, which provides primi-
tives tomanipulate labeled streamswhile avoiding information
leakage. Function labelOf obtains the label associated with a
labeled stream. To understand the rest of the primitives, we
need to introduce the concept of a floating label.
Every line in the Haski monad is associated with a special

label known as the floating label (denoted by fl), which “floats
above” the label of any observed stream during program exe-
cution and thus represents an upper-bound on the sensitivity
of all the streams in scope. The floating label is tracked in the
state of the Haski monad:

data HaskiSt = HaskiSt {defs :: [Def ], fl :: Label, ... }

In order to enforce IFC policies, Haski regulates the interac-
tion between Haski computations and labeled streams. Haski
computations cannot write and read labeled streams directly,
but must use the primitives in Figure 5. Let us discuss the
implementation of these primitives next.

5.3 Implementing the labeling primitives
The labeling primitives create and read labeled streams in
compliance with specific security rules to avoid information
leakage [Bell and La Padula 1976].

The primitive label labels a stream with the given label and
does not affect the floating label of the program. Its implemen-
tation ensures that the desired label ℓ is at least the floating la-
bel of the program, i.e., fl ⊑ ℓ, thus enforcing a no write-down
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<C1, I1>⊑<C2, I2>⇐⇒ (C2 ⇒ C1) ∧ (I1 ⇒ I2)

<C1, I1> ⊔ <C2, I2>⇐⇒ <C1 ∧ C2, I1 ∨ I2>

<C1, I1> ⊓ <C2, I2>⇐⇒ <C1 ∨ C2, I1 ∧ I2>

⊥ ≡<True, False> ⊤ ≡<False, True>

Figure 6. DC-labels semantics

policy. Intuitively, label creates a labeled stream as long as the
decision to do so depends on less sensitive data. For example,
given fl = L, the invocation label H s (for some s :: Stream Int)
is legal since fl ⊑ H . This means that a program which has
read sensitive data cannot write public information in an at-
tempt to leak it. If this criteria is not met, label inserts an error
using fail in the Haski monad, thus crashing compilation.
The primitive unlabel acts as the dual of label and extracts

the stream underlying a labeled stream. Unlike label, however,
unlabel never crashes compilation and always succeeds. In-
stead, the invocation unlabel sl raises the floating label of the
program to fl ⊔ ℓ.

Haski, as any other floating-label based IFC systems, suffers
from the label creep problem. Unlabeling sensitive streams
raises the floating label of the program, and hence a program
which reads many sensitive streams risks raising its level to
a point where it may not be able to produce any observable
result. This problem is remedied using the toLabeled primitive,
which addresses it by (i) creating a separate context where
some sensitive computation can take place and (ii) restoring
the original floating label afterwards.
The argument of toLabeled is a sensitive computation of

type Haski (Stream a), that cannot return its result to the
outer context—since that would be a leak. Instead, toLabeled
wraps the result in a labeled stream using the floating label
resulting from the execution of the sensitive computation.
Unlike unlabel, toLabeled produces a labeled stream of type
LStream a and its invocation does not affect the floating label.
An invocation of toLabeled never fails.

5.4 Running programs securely
DC-labels. Haski uses DC-labels [Stefan et al. 2011a], which

is an expressive label format that can capture the security
concerns of principals. DC-labels are pairs of confidentiality
and integrity policies, noted < C, I > where C is the confi-
dentiality policy and I is the integrity one. Both policies are
positive propositional formulas in conjunctive normal form
(CNF), where propositional constants represent principals. We
assume that operations on formulas always reduce their re-
sults to CNF. For simplicity, we focus on confidentiality since
the integrity part comes as a dual of it. Given two confiden-
tiality policies C1 and C2, we interpret <C1, I> ⊑ <C2, I> as:

C2 is at least as confidential as C1. For instance, <Halexa ∨
Octavius, I> ⊑ <Octavius, I>, which means that data readable
by either Halexa or the Octavius is less confidential than data
readable only by the Octavius. In contrast, given two integrity
policies I1 and I2, we interpret <C, I1> ⊑ <C, I2 > as: I1 is
more trustworthy than I2, i.e., there are more principals taking
responsibility for the data labeled with I1 than in I2. For in-
stance, <C,Octavius ∧ Halexa> ⊑ <C,Halexa>, which means
that Halexa and the Octavius are jointly responsible for the
data, which is more trustworthy than data only vouched by
Octavius. Figure 6 presents the formalization of operations we
will use in the rest of this section together with the definition
of ⊔ and ⊓ in the security lattice. With DC-labels in place,
we can associate the different components of our system to
different principals, thus enabling them to impose different
restrictions on the confidentiality and integrity of data.

Configuring security policies. A Haski program that re-
turns a stream (labeled or not) can be run using the runAs
function on behalf of a principal. This function is intended to
be used by an administrator who compiles a Haski program
and assigns the right privilege to it—we assume that the ad-
ministrator is part of the trusted computing base. Function
runAs is defined as follows:

class IsStream f where
runAs :: Haski (f a) → Principal → Haski (Label, Stream a)

The result of the Haski (f a) argument is overloaded in f to
allow for both labeled and unlabeled streams to be returned.
The Principal argument is used to set the initial floating label
of the Haski computation and denotes the source of author-
ity, i.e., the entity, that this program represents. For example,
runAs prog "Halexa" runs a computation on behalf of Halexa
with the DC-label <Halexa,Halexa>. As a result, any stream
that is labeled by prog will contain Halexa in both the confi-
dentiality and integrity components of its label—which means
that the stream is confidential to Halexa, and also that Halexa
has contributed to its content.
The runAs function returns a label that corresponds to the

final floating label of the computation joined with the label
of its result, along with the result that it returns. The label is
intended to be used by the administrator to enforce application-
specific security policies. Observe that the result is an unla-
beled stream. This is due to the fact that runAs is run by the
administrator, i.e., a person that we trust, so there is no need
to protect the resulting stream by labeling it.

We implement the runAs function using the toLabeled prim-
itive. This is because toLabeled allows us to create a separate
context for the program to be run in, and, as observed ear-
lier, restores the floating label of the administrator prior to
execution. Restoring the floating label of the administrator
allows the administrator to run programs on behalf of vari-
ous principals without getting tainted by them. Here is the
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type Status = Maybe Action
data WindowOp = Skip | Open | Close

halexa :: Stream Int → LStream Status
→ Haski (LStream WindowOp)

halexa = node "halexa" $ λtemp statl → do
isHot ← letDef $ temp ‘gtE‘ 30
toLabeled $ do
stat ← unlabel statl
pastAct ← (stat ‘match‘mkReq) >>= cache
recentAct ← stat ‘match‘ (maybe pastAct val)
dec ← recentAct ‘match‘ λcase
Left → val Close
Entered → ifte isHot (val Open) (val Skip)

return dec
where
mkReq :: Status→ Stream Req
mkReq Nothing = val Read
mkReq (Just x) = val (Write x)

Figure 7. Implementation of Halexa

Stream instance which implements runAs for computations
that return expressions.

instance IsStream Stream where
runAs prog princ = do
(LStream ℓ res) ← toLabeled $ do

setLabel (newDCLabel princ princ)
prog

return (ℓ, res)

Function setLabel can only be used by the administrator and
it is part of the trusted computed base, i.e., it is present in the
IFC interface exposed to developers. The function newDCLabel
creates a label from the given principal by using it for both
the confidentiality and integrity components.
The instance for the case of labeled expressions is imple-

mented in turn using the above instance by simply unlabeling
the result.

instance IsStream LStream where
runAs prog princ = runAs (prog >>= unlabel) princ

The intended effect of this implementation is for the resulting
label to be ℓ ⊔ fl, where fl is the floating label of prog at the
end of its execution, and ℓ is the label of its result.

6 A Sample Application
In this section we illustrate the structure of the Halexa appli-
cation and its security policy in Haski. The purpose of our
application is to make a decision on opening a window, based
on the current temperature in the house and the status of the
user Octavius. Halexa is expected to open the window when

the temperature in the room is over 30◦C provided Octavius
is at home. If Octavius is not home, however, Halexa must
close the window regardless of the temperature. We consider
the status of Octavius sensitive information and thus we re-
quire Halexa to confine the status and any information derived
from it. That is, the status cannot be used to build streams less
sensitive than the DC-label <Octavius,Octavius>.
We model Halexa as a node which accepts two streams as

arguments (see Figure 7): one of type Stream Int for the tem-
perature reading, and another of type LStream Status for a la-
beled stream of notifications which notify Halexa about the ac-
tions of Octavius. The notifications specify whether Octavius
has left (Just Left), entered (Just Entered), or that there is no
change in status (Nothing). In response, the node returns a
stream of instructions denoted by Stream WindowOp which
instructs whether the window should be opened (Open), closed
(Close), or whether nothing should be done (Skip). In essence,
we implement Halexa using the toLabeled primitive to unlabel
the labeled stream statl , thus ensuring that Halexa does not
read its contents.

To understand the logic of the implementation, notice that
a status stream stat need not contain any update in Octavius’s
action since it may be Nothing. Hence it is up to us to compute
the whereabouts of Octavius from the most recently observed
action. We compute this in the stream recentAct as follows: if
the current value of stat is Nothing then use the last available
action of the user (given by pastAct), else simply use the ac-
tion given by stat. The stream pastAct retains the last action
of the user using the cache node from earlier. Finally, we de-
fine a decision stream by matching on the recentAct stream,
which produces the desired result. The combinator ifte is sim-
ply a shortened version of a match expression which pattern
matches on True and False.
An administrator who wishes to run Halexa must provide

the appropriate input streams to the node and assign the right
policies using the function runAs. One such implementation
is the following.

admin :: Haski (Stream WindowOp)
admin = do

temp← ...
status← ...
statusl ← label ℓo status
(res, ℓ) ← runAs (halexa temp statusl) (principal "Halexa")
unless (ℓ ⊑ (ℓo ⊔ ℓh)) (fail "Bad Halexa")

return res
where
ℓo = newDCLabel "Oct" "Oct"

ℓh = newDCLabel "Halexa" "Halexa"

The security policy unless... in admin asserts that the result-
ing label must at most be a combination (⊔) of the labels of
Octavius and Halexa. A simple case of obtaining the inputs
would be to simply use fresh variables to define streams temp
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and status, which are then later initiated by the runtime. For
a more realistic system, however, we require a way to obtain
streams from entities outside of a Haski program. We discuss
one possibility to address this requirement via bluetooth in
the next section.

7 Reacting to Streams Outside of Haski
A typical IoT application communicates with several other
applications and reacts to triggers which may originate from
remote devices. To use Haski to build more realistic appli-
cations, it is important to enable streams to be provided by
external sources. In this section, we consider the case of ob-
taining streams from remote devices via Bluetooth, which is
a common means of communication in low power IoT de-
vices. We manage to run Halexa by creating a small C runtime
around the code generated by Haski. In essence, the runtime
obtains the temp and status streams from earlier via the Blue-
tooth Low-Energy (BLE) API of Zephyr OS on the nrf52840DK
board using the techniques discussed here with some manual
intervention.

7.1 Briefly about Bluetooth Low Energy
The Bluetooth component we target uses the BLE stack on
Zephyr OS4, where the most common way that data flows
through a BLE application is through a Generic Attribute Pro-
file (GATT) server. Specifically, a device that has some data
it wishes to make available to other devices will take the role
of a GATT server. It will organise the data it has as character-
istics that belong to services. As an example, a device might
expose a biometrics service which in turn exposes the heart
rate characteristic and the temperature characteristic.

A remote device that wishes to access or modify these values
will take the role of a GATT client. A GATT client will initiate
a connection to a GATT server, after which it scans for services
and characteristics. Depending on the server configuration the
client can update a remote characteristic, read a characteristic
or subscribe to be notified about changes to a characteristic.

7.2 Preparing Halexa for foreign streams
A Haski program works on streams, yet the APIs we want to
use in Zephyr OS use commands and callback functions. These
need to be connected somehow.
For example, the Bluetooth API contains a function called

bt_gatt_subscribe that is used to register a callback function
whenever a message is received from a specified device. In
Haski, when we subscribe to a device, we do not provide a
callback function, but we receive a Haski stream instead:

btGattSubscribe :: DeviceID→ Haski (Stream a)

So, for example, in order to connect the Halexa example from
the previous section to the devices tempSensor andmotionSensor ,
we can write the following code:

4https://www.zephyrproject.org/

temp ← btGattSubscribe tempSensor
status← btGattSubscribe motionSensor
...

The compilation process will then generate an invocation of
the C function bt_gatt_subscribe in the generated code and
registers a callback to the step function—which is generated
for every node—of Halexa. This means that the step function
is called every time the devices tempSensor and motionSensor
provide an update. Since the step function receives two argu-
ments and the devices only produce one of them at a time, the
step function is called with a default argument for the other.
For example, the value of the status stream is Nothing when
tempSensor provides an update.

7.3 The Halexa GATT Client
The BLE code that ties together the Halexa example with the
remote temperature and the motion sensor assumes the role of
a GATT client. The GATT client will scan for remote devices
by calling the bt_le_scan_start BLE API function. The follow-
ing function signatures have been simplified and rewritten in
Haskell notation, and many less interesting functions have
been omitted. The actual C versions of the API functions can
be found in Appendix A.1.

bt_le_scan_start :: ScanParams
→ (RemoteDeviceInfo→ Int)
→ Int

The second argument is a function that will be invoked when
a device has been found. Once a remote device is found, a
connection will be initiated with bt_conn_le_create.

bt_conn_le_create :: RemoteAddress
→ CreateParams
→ ConnectionParams
→ Connection
→ Int

When the connection has been established, we will scan it for
the services it exposes. We expect to discover, e.g., the tem-
perature service. To do this, we need to create some discovery
parameters and then invoke bt_gatt_discover .

bt_gatt_discover :: Connection→ DiscoverParams→ Int

A subexpression of DiscoverParams is a function that will be
called when a service have been discovered. This function will
subscribe to a found service by invoking bt_gatt_subscribe.
This will make sure that Halexa is notified about any changes
to the remote temperature value.

bt_gatt_subscribe :: Connection→ SubscribeParams→ Int

The SubscribeParams contain a function that will be called
every time a notification is received. The function will be
invoked with values describing the connection that issued the
notification as well as the actual payload.

https://www.zephyrproject.org/
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Recollect from earlier that a node in Haski is compiled to
step function in C which is invoked in response to the avail-
ability of its arguments. Compiling Halexa from the previous
section generates a corresponding step function halexa_step.
This function has the following signature.

Enum halexa_step (struct halexa_mem ∗ self ,
int temp, Enum motion)

In addition to this function, compiling Halexa also gener-
ates a struct halexa_mem, an instance of which is provided
as the argument self to function halexa_step. This argument
maintains the internal state of the stream returned by Halexa.

struct halexa_mem { ... };

For every call of a node in a Haski program, an instance of
such a struct is initialized globally before the first invocation,
and passed as an argument to every subsequent invocation
of the correponding step function. For Halexa, initialization is
done as follows.

/∗ Global definition ∗/
struct halexa_mem ∗mem;
...

/∗ Evaluated by main ∗/
mem = k_malloc (sizeof (struct halexa_mem));

Using these definitions we build a function that is registered
as a callback to be invoked whenever the BLE application
receives, for example, a new temperature reading (as shown
below).

static u8_t notify_temperature (..., const void ∗ data ) {
...

int ∗ temperature = (int∗) data ;
...

halexa_step (mem, ∗temperature,NOTHING);
...

}

We invoke the function halexa_step with its internal mem-
ory mem, which stores the internal state of the node. Notice
that we pass NOTHING, a representation of the correspond-
ing Haskell value, for the status stream here. This is because
the function notify_temperature is invoked in response to the
temperature sensor, which does not provide a status update.
A similar callback function must be registered for the status
stream by invoking halexa_step with a default temperature
reading.
We emphasize that the small C runtime we implemented

here is tailored to BLE and it requires some manual interven-
tion to make the coupling between the generated code by
Haski and Zephyr OS’s API—we leave as future work to devise
an automatic mechanism to do that.

7.4 Going Forward
The attentive reader might have paused to think while reading
the previous section. The previous section describes how we
compile a synchronous programming language to a target
which uses callbacks and events instead of streams. It is not
immediately obvious how to do this. This discrepancy leads
to the need for manual intervention when connecting the
generated code to the outside world via BLE.

There are a few questions that need to be addressed in future
work. How is a continuous stream created from the sporadic
events given to a callback function by the outside world? How
do you compile a Haski node and dynamically register and
unregister it as a callback?
We believe nicely generalising this is possible, and leave

this and more questions as future work.

8 Related Work
Synchronous languages. The seminal work of Lustre [Caspi

et al. 1987] (sometimes called "classical Lustre") shows how a
declarative synchronous programming style can benefit from
memory and computational time bounds. Lustre’s ideas have
been applied in a wide-range of scenarios ranging from hard-
ware design (e.g., [Bjesse et al. 1998]) to real-time reactive
systems (e.g., [Qian et al. 2015]).
Haski is based on a variation of classical Lustre from Bier-

nacki et al. [2008], the semantics of which has been formalized
and verified by Auger et al. [2012] and Bourke et al. [2017].
The main difference between classical Lustre and the variant
used by Haski is the absence of the current operator and the
addition of the merge and reset operators. For a more detailed
discussion on the differences, see Bourke et al. [2017]. Haski
does not (yet) implement the reset operator.

A notable implementation of Lustre that is closely related to
ours is Lucid Synchrone [Caspi et al. 2008]. Lucid Synchrone
uses OCaml as the host language and allows a rich program-
ming interface with many higher-order features of OCaml.
Unlike Haski, it allows pattern matching on complex data
types (e.g., streams of functions) that are not limited to finitely
enumerable types. Naturally, the richer features offered by
Lucid Synchrone also place higher demands from the runtime
system, such as the need for a garbage collector. Haski, on
the other hand, targets memory constrained IoT devices and
thus strives to keep the runtime system minimal. The code
generated by compiling a Haski program can be executed
with a fixed amount of memory and does not require garbage
collection.

Functional Reactive Programming. Functional Reactive
Programming (FRP) [Elliott andHudak 1997] is a programming
style for programming asynchronous reactive systems. Unlike
Lustre, it has the convenience of incorporating higher-order
functions at the price of possibly introducing memory leaks—
as noticed and addressed in subsequent work (e.g., [Bahr et al.
2019; Courtney et al. 2003; van der Ploeg and Claessen 2015]).
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Haski does not support higher-order functions as first class val-
ues, but enables developers to utilize them to build first-order
Lustre programs. The staged programming approach ensures
that all higher-order functions are eliminated at compile time,
thus removing the need to address space leaks which may be
caused by them.

Code generation for C. We are not the first ones to pro-
pose an eDSL in Haskell for generating memory safe C code.
Closest to our work is Copilot [Pike et al. 2013], an eDSL for
stream-based programming for avionics. While Copilot pro-
vides similar guarantees on the generated code w.r.t. constant
space and execution time, Haski presents a different program-
ming experience (e.g., a monadic interface) as well as IFC
security features. Haskino [Grebe and Gill 2016] is an eDSL
to write programs to be run in an Arduino board while sup-
porting a light-weight notion of threads. Like Haski, Haskino
deploys the generated-C code into a custom made runtime.
Feldspar [Axelsson et al. 2010] is a DSL for describing digi-
tal signal processing algorithms in Haskell and generate C
code. Ivory [Elliott et al. 2015] is an advanced DSL for writing
memory-safe C code within Haskell. It uses a simple notion
of memory regions and also provides access control security
checks to restrict side-effects in the generated C-code.

Language-based security for IoT. Pyronia [Melara et al.
2019] provides access control and IFC for embedded devices
written in Python. Pyronia runs under a custom-made run-
time responsible to perform system call interposition, call stack
inspection, and memory protection. Such modification are re-
quired to ensure that Python, where by design data is public,
can safely execute and interact with C programs. In contrast,
Haskell provides good abstractions to deliver a pure language-
based IFC solution [Russo 2015; Russo et al. 2008; Stefan et al.
2011b], which enables Haski to not require special runtimes
and run on commodity IoT OSes. SainT [Celik et al. 2018]
delivers an static IFC analysis for commodity SmartThings
apps. SainT builds an intermediate representation for Groovy
(object-oriented) SmartThings programs, where IFC checks
are carried out. SainT targets legacy code while Haski provides
security by construction using a coarse-grained IFC approach.
Hence, SainT needs to extend the semantics of Groovy com-
mands to reason about IFC. Instead, Haski provides modular
security types (LStream) and primitives (e.g., label and unlabel)
atop of our synchronous language. Velox VM [Tsiftes and Voigt
2018] provides a Scheme virtual machine for constrained de-
vices. Every app run by the VM has an associated access control
policy file, which is used to restrict apps from accessing sen-
sitive data and resource usage. As future work, Haski could
integrate resource usage control as done by Velox VM.

Haskell security libraries. The closest Haskell IFC libraries
to our approach are LIO [Russo 2015], HLIO [Buiras et al. 2015],
and MAC [Stefan et al. 2011b]. Our approach to enforce IFC
at compile-time leads us to a new design space, where our

API is a simplified version of the LIO’s one due to execut-
ing the analysis at compile-time. More specifically, LIO takes
an extra parameter in toLabeled to avoid leakage via labels
[Buiras et al. 2014], which Haski does not suffer from by tak-
ing an static (compile-time) approach. Compared with HLIO
and MAC, Haski is static but does not rely on Haskell’s type-
system for security checks but rather on the Haski compiler.
Generally speaking, Haski’s IFC API is a static, simplified,
version of LIO’s API while not going all the way to HLIO or
MAC—it is something in between.

9 Final Remarks
We have presented Haski, a Haskell eDSL for writing software
in embedded devices. Haski generates C code with memory
consumption guarantees as well as information-flow security
thanks to many program analyses realized by the compiler.
We showcase that Haski programs can be easily integrated
with a realistic runtime like the BLE in Zephyr OS. We ex-
pect this work to be a foundation to build IoT applications
that leverage, not only BLE, but most of the underlying em-
bedded OS functionality while providing security properties.
Furthermore, we leave as future work to adapt our eDSL to
allow users to be “in the loop” when relaxing IFC restrictions,
e.g., to enable opening windows when the user is not home
or to allow sending occupancy information to a security mon-
itor firm. The Haski core development5 (excluding the BLE
runtime) currently consists of 2621 lines of Haskell code.
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A Appendix
A.1 BLE API function prototypes in C
For brevity, the following API signatures were rendered as
Haskell’s type signatures in the paper. Below, we show the
complete Zephyr OS’ API signatures for the methods described
in the paper.

int bt_le_scan_start (const struct bt_le_scan_param ∗ param,
bt_le_scan_cb_t device_found)

int bt_conn_le_create (const bt_addr_le_t ∗ peer,
const struct bt_conn_le_create_param ∗ create_param,
const struct bt_le_conn_para ∗ conn_param,
struct bt_conn ∗ conn)

int bt_gatt_discover (struct bt_conn ∗ conn,

5https://github.com/OctopiChalmers/haski
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struct bt_gatt_discover_params ∗ params)

int bt_gatt_subscribe (struct bt_conn ∗ conn,
struct bt_gatt_subscribe_params ∗ params)
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